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Abstract. Loosely bound Exotic Nuclei in the neutron-halo region have very small neutron/proton sep-
aration energy implying a long tail of the last loosely bound nucleon. An accurate treatment of this tail
is crucial for the description of several reaction observables. We propose, for such loosely bound Exotic
Nuclei, a simple analytic expression for nucleon densities which incorporates correctly two basic physical
requirements: a) The asymptotic behavior (r → ∞). b) The behavior near the center (r → 0).
The expression provides, separately, the neutron and proton densities and is suitable for the description
of Exotic Nuclei in the neutron-halo region. In addition it provides a simple physical insight into the den-
sity in the outer (halo) region. Glauber type calculations for reaction cross-sections, using these densities
have been carried out for such nuclei. The calculated cross-sections are found to be consistent with the
experimental values. The calculated densities are in good agreement with the corresponding so-called ex-
perimentally deduced densities (where available) indicating the reliability of the proposed model densities.

PACS. 27.20.+n 6 ≤ A ≤ 19 – 21.10.Ft Charge distribution – 21.60.-n Nuclear structure models and
methods – 25.70.-z Low and intermediate energy heavy-ion reactions

1 Introduction

Most of the current nuclear physics activity is based on
the heavy-ion collision experiments. With the present-day
available accelerator and detection facilities, it is now pos-
sible to produce and study nuclei far away from the sta-
bility line—the so-called Exotic Nuclei. Highly unstable
nuclei can be studied with the help of the radioactive
ion beam (RIB) facility. In these investigations [1–4], the
observed sudden rise in the measured interaction cross-
sections in the neutron rich light nuclei, specifically while
going from 9Li to 11Li, 12Be to 14Be and 15B to 17B has
been attributed to the corresponding large increase in the
nuclear mass rms radii. This fact is an indication of the
sudden change in the structure of these nuclei due to the
addition of the last two neutrons. The celebrated example
in these investigations is the discovery of the phenomenon
of Neutron-Halo [1] especially in 11Li. The Neutron-Halo
is qualitatively associated with the very small separation
energy (εn) of the last neutron. Due to this small value
of εn, the tail of its last neutron wave function and the
corresponding density spreads far out from the center of
the nucleus. This is understood to form what is known
as Neutron-Halo. The Exotic Nuclei which lie close to the
neutron/proton drip line generally have very small neu-
tron/proton separation energy. Therefore, the correct de-
scription of their last nucleon wave function will play a
crucial role in the theoretical calculations specially for ob-
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servables of the scattering and reaction processes. This
is akin to the situation of the very loosely bound elec-
tron in the atomic case (e.g. alkali atoms, negative ions).
There, it was observed that it is essential to incorporate
properly the correct asymptotic behavior of this last elec-
tron wave function especially for a reliable description of
the photo-ionization [5] and polarizabilities [6–8]. Based
on this realization, the loosely bound nucleus (e.g., 8B
or 11Li or 11Be etc.) is treated as a core and a tail cor-
responding to the last halo neutron(s)/proton(s) having
the correct asymptotic behavior governed by the separa-
tion energy of the last neutron/proton [3,9]. The so-called
experimental density is then extracted by fitting the pa-
rameters appearing in the core density and the tail part,
to reproduce the experimental data such as reaction cross-
sections, transverse-momentum distribution, neutron sep-
aration energy. For example in the case of 11Li the core
(9Li) density was taken to be of Harmonic Oscillator (HO)
type and the halo neutrons were assumed to move inde-
pendently in the average potential provided by the core
with the same shape as that of the core density. The depth
and the width of this potential were treated as parame-
ters which were determined so as to give the right neutron
separation energy (asymptotic behavior), and the density
obtained yields in the Glauber model, an overall best fit
to the experimental reaction cross-sections [3].

We had proposed [10,11] a simple analytic expres-
sion for the nucleon densities which incorporates correctly
two basic physical requirements the asymptotic behavior
(r → ∞) and the behavior near the center (r → 0). The
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expression uses the nucleon separation energies (viz. εn
and εp) and the charge radii as input to yield separately,
the neutron and proton density distributions. The input
information could be taken from the experiment where
available and from the earlier published work in other
cases. This density (eq. (19)) has been used [10,11] for the
nuclei near the beta stability line. It yields [12] the elec-
tron scattering form factors in excellent agreement with
the experiments. The resulting neutron densities are also
found to be consistent [13] with the corresponding ex-
perimental observations (where available) and also with
the corresponding neutron density distributions obtained
from sophisticated mean-field calculations.

The loosely bound nuclei generally have large neu-
tron/proton excess and may even lie close to the neu-
tron/proton drip line. In addition these nuclei generally
have very small nucleon separation energy and therefore
a long tail, so that the correct treatment of this tail part
(asymptotic behavior) is crucial. For a loosely bound nu-
cleus, we propose [14] a density which contains explicitly
an additional term describing the tail (halo). For example,
for a neutron-rich nucleus (N,Z), the neutron density is
written as

ρn(r) = ρcore(r) + ρtail(r).

Both the parts ρcore and the tail ρtail have their correct
asymptotic behavior. These expressions require the same
input as before namely, the nucleon separation energies
and the charge radii. The expression then provides, sepa-
rately, the neutron and proton densities and also the tail
part. Therefore, it renders a simple physical insight into
the density in the outer (halo) region. Glauber type cal-
culations using these densities have also been carried out
for such nuclei. The calculated cross-sections are found to
agree with the experiment. The calculated densities com-
pare well with the corresponding so-called experimental
densities (where available) indicating the reliability of the
proposed model densities.

In section 2 the details of the ingredients of the pro-
posed density and its final expression are presented. The
results of the numerical calculations are presented and an-
alyzed in section 3, where these are also compared with
the corresponding relevant earlier studies. The paper ends
with the concluding remarks.

2 Formulation

The quantum-mechanical description of atoms, molecules,
and nuclei with more than two particles, encounters
the difficult problem of analyzing the many-particle
Schroedinger equation or its relativistic generalization.
However, though the equation is very complicated in
structure, it is possible to deduce some general proper-
ties of the wave functions. These properties follow from
the general structure of the equation and the interaction.

2.1 General characteristics

Particularly significant are:

1) the asymptotic behavior of the wave function when
one of the particles is far away from the remaining
particles and

2) the behavior near the center.

We shall now discuss these in the following subsections.

2.1.1 Asymptotic behavior

The wave function in the outer region is important in the
description of the interaction of the system with other
particles or with external fields. We begin with a descrip-
tion of the asymptotic behavior of non-relativistic bound
state energy eigenfunctions. The non-relativistic Hamilto-
nian for an N -particle system may be written as

H(N) =
N∑

i=1

1
2mi

p2
i +

N∑
i>j

[
Vs(rij) +

qiqj

rij

]
, (1)

where rij = |ri − rj |, Vs(rij) is the short-range nuclear
interaction, and the Coulomb interaction qiqj/rij domi-
nates at large separations of the particles i, j. We con-
sider an eigenfunction of this Hamiltonian in the center
of mass frame, with eigenvalue E(N)

0 . An eigenfunction of
this Hamiltonian with eigenvalue E

(N)
0 , can be expanded

in terms of the eigenfunctions of the (N − 1)-particle sys-
tem in its center-of-mass frame, as follows:

HNψ
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with n = 0 representing the (N−1)-particle ground state.
Operating by H(N) on ψ
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where r1j = |r − rj |, m is the reduced mass of particle 1,
L is the angular-momentum operator, and

Q =
∑
j>1

qj (5)

is the charge of the remaining core seen by particle 1 when
it is far away. In the limit of r → ∞, one obtains

∂2

∂r2
fn(r) =

(
2m
h̄2

)[
E(N−1)

n − E
(N)
0

]
fn(r), (6)
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so that

fn(r) → e−r[2m(E(N−1)
n −E

(N)
0 )/h̄2]1/2

for r −→ ∞. (7)

Clearly, the exponent has the smallest magnitude when
E

(N−1)
n has the lowest value and therefore the n = 0 term

dominates the asymptotic region.
In the r → ∞ domain, we consider a solution of the

form

f0(r) =
∑
i=0

cir
u−ie−arY m

l (θ, φ), (8)

a =
[
2mε

h̄2

]1/2

,

ε = E
(N−1)
0 − E

(N)
0 .

Here � is the angular-momentum quantum number of the
particle when it is far away from the remaining core and ε
is its separation energy. In eq. (4) for n = 0, the f0(r) term
on the right-hand side is the leading asymptotic term, and
for the n = 0, i = 0, the leading coefficient of f0(r) on
the right-hand side is of the order of 1/r3 (the 1/r2 term
vanishes because of parity). Therefore substituting eq. (8)
into eq. (4), we get for the two leading terms,

ci =
1
2
ci−1

�(�+ 1)− (i− u− 1)(i− u− 2)
a(i− u− 1)−mq1Q/h̄2 , i = 0, 1. (9)

Requiring that c−1 = 0, we get

u = −mq1Q

h̄2a
− 1 (10)

and for i = 1, we get

c1 =
1
2a

(�− u)(�+ 1 + u)c0. (11)

The asymptotic behavior of the wave function is then
given by [15–19]

ψ
(N)
0 (1, . . . , N) −→ (ru + dru−1)e−arY m

� (θ, φ)

φ
(N−1)
0 (2, . . . , N) for r −→ ∞ (12)

a =
[
2mε

h̄2

]1/2

,

u = −mq1Q

h̄2a
− 1,

d =
1
2a

(�− u)(�+ u+ 1), (13)

where r is the position of particle 1 with respect to the
center of mass of the remaining core,m is its reduced mass
with respect to the mass of the core, ε is its separation en-
ergy, q1 is its charge, and Q is the charge of the remaining
core. This asymptotic behavior is intuitively suggestive
and understandable. The probability for a particle to be
far away from the remaining system, is the highest when

it has the highest energy and the remaining core has the
least energy, i.e. the core is in its ground state. There-
fore, the far away particle has an energy which is equal to
the negative of the separation energy, and its asymptotic
exponential behavior is given by e−ar with the exponent
related to the separation energy as in (eq. (8)). Further-
more, the main potential it sees is the Coulomb potential
due to the remaining core which determines the leading
power behavior as ru with u related to the charges as in
(eq. (13)). It should be pointed out that the leading power
behavior (ru) for the nuclear case is different for protons
and for neutrons due to the dependence of u on the prod-
uct of charges q1 and Q, which is zero (as q1 is zero) for
neutrons. The next power term in the asymptotic behavior
depends also on the angular momentum of the far away
particle and its relative strength is given by d defined in
eq. (13).

The leading term of asymptotic radial density (aver-
aged over angles) of the particles (e.g., nucleons) then
takes the form

ρi(r) −→ r−2αie(−r/ai) as r −→ ∞, (14)

where
ai =

h̄

2(2mεi)1/2
, (15)

and

αi =
q1Q

h̄

(
m

2εi

)1/2

+ 1; (16)

i = n or p, q1 = 1 for protons and q1 = 0 for neutrons, εi is
the corresponding nucleon separation energy, q1Q = 0 for
neutrons and q1Q = Z−1 for protons, Z being the atomic
number and m is the reduced mass which for simplicity
we take it to be the nucleon mass.

2.1.2 Behavior near the center

It is known [10,11,18] that the slope of the nuclear densi-
ties ρi(r) vanishes at r = 0, which implies that the linear
term in the power series of ρi(r) is absent. Indeed, the se-
ries should contain only the terms with even powers of r.
This follows from the fact that since there are no external
sources of interaction, all the derivatives of ρi(r) (so also
of the wave function Ψi) with respect to x, y and z exist.
The presence of terms with odd powers of r would imply
that some of the derivatives with respect to x, y and z are
singular at the origin. This can be made plausible in terms
of the Hartree-Fock equation for the wave functions;

− h̄2

2m
∇2Ψi(x) = εiΨi(x)−

∑
j

∫
V (x′, x)

×
[
|Ψj(x′)|2Ψi(x)− Ψ∗

j (x
′)Ψi(x′)Ψj(x)

]
d3x′. (17)

Here we assume that the interaction V (x′, x) is a function
of |x′−x|, and that the integrals exist if the wave functions
are finite. Clearly, if Ψi exist then the first and second
derivatives of Ψi exist (we discount the possibility that
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∇2Ψi exist but the derivatives with respect to x, y and z do
not exist separately). To show that the higher derivatives
exist, we take the derivatives of eq. (17). For example,
taking the derivative of eq. (17) with respect to x, realizing
that V (x′, x) is a function of |x′ − x|, and integrating by
parts, we get

− h̄2

2m
∇2 ∂Ψi(x)

∂x
= εi

∂Ψi(x)
∂x

−
∑

j

∫
V (x′, x)

×
[
|Ψj(x′)|2 ∂Ψi

∂x
+Ψi(x)

∂

∂x′ |Ψj(x′)|2 − Ψ∗
j (x

′)Ψi(x′)
∂Ψj

∂x

−∂Ψ∗
j (x

′)
∂x′ Ψi(x′)Ψj(x)− Ψ∗

j (x
′)
∂Ψi(x′)
∂(x′)

Ψj(x)
]
d3 x′. (18)

It has already been stated that the first and second deriva-
tives of Ψ(x) exist, hence the integrals in eq. (18) exist
implying thereby that the third derivatives of Ψ(x) also
exist. This procedure can be continued iteratively to ar-
gue that all the derivatives with respect to x, y and z of
Ψ(x, y, z) (so also of ρ(r)) exist. This of course implies that
the power series for ρ(r) should contain only even powers
of r.

2.2 Semiphenomenological density

It is indeed encouraging that though the actual nuclear
densities may have complicated structure, one can deduce
some local properties at small and large distances from the
center. Here we consider model nuclear densities based on
these properties. We first discuss the densities for nuclei
near the β-stability line. We then develop simple, analyti-
cal densities for loosely bound nuclei for which the asymp-
totic behavior is particularly important.

2.2.1 Nuclei near the β-stability line

We had proposed [10,11] the following simple expression
for ρ(r) which fulfills the above requirements namely the
asymptotic behavior and behavior near the center.

ρi(r) =
ρ0

i

1 +
[
(1 + (r/R)2)/2

]αi
[
e(r−R)/ai + e−(r+R)/ai

] , (19)

with i = n or p. The parameters ρ0
n and ρ0

p appearing
in the expression of the density (eq. (19)) are determined
from the normalization:

4π
∫

ρnr
2 dr = N, (20)

4π
∫

ρpr
2 dr = Z, (21)

where N (Z) is the total number of neutrons (protons)
in the nucleus.The only remaining parameter R, is deter-
mined by requiring that the rms radius for proton density,

Rp, predicted by the expression (eq. (19)) is equal to that
obtained from the experimental rms charge density radius
Rc, by using

Rp ≈ (
R2

c − 0.6
)1/2

, (22)

where 0.6 is the small correction to account for the fi-
nite size of the proton. The expression then provides sep-
arately the neutron and proton density distributions. The
proposed density (eq. (19)) has been successfully used [10,
11] for the nuclei near the beta stability line. It yields [12]
the electron scattering form factors in excellent agreement
with the experiment. The resulting neutron densities are
also found to be consistent [13] with the corresponding
experimental observations (where available) and also with
the corresponding neutron density distributions obtained
from sophisticated mean-field calculations.

2.2.2 Loosely bound and halo nuclei

The loosely bound nuclei generally have large neu-
tron/proton excess and may even lie close to the neu-
tron/proton drip line. In addition these have very small
nucleon separation energy and therefore a long tail, so that
the correct treatment of this tail part (asymptotic behav-
ior) is crucial. For a loosely bound nucleus, we propose a
density which contains explicitly an additional term de-
scribing the tail (halo).

For example, for neutron rich nucleus (N,Z), the neu-
tron density is written as

ρn(r) = ρcore(r) + ρtail(r). (23)

Both the parts ρcore and the tail ρtail should have their
correct asymptotic behavior. Here the ρcore (the neutron
part of the core (Nc, Z)) density is given by eq. (19) in
which the neutron separation energy εn and R correspond
to the core nucleus (Nc, Z). For the neutron tail or halo
part ρtail we take

ρtail = N0

(
r2

(r2 +R2)2

)
e−r/at , (24)

where
at =

h̄

2(2mεt)1/2
. (25)

Here εt is the neutron separation energy of the loosely
bound nucleus (N,Z) while R appearing in the expression
of ρtail corresponds to the core nucleus (Nc, Z). The con-
stant N0 is to be fixed by requiring that ρtail corresponds
to the correct number of neutrons in the tail (halo). For
the proton part of the density of (N,Z), we use the expres-
sion (eq. (19)) in which the proton separation energy εp
and R correspond to the nucleus (N,Z). This is supposed
to take into account, approximately, the small differences
in the proton distributions in the core (Nc, Z) and the
loosely bound nucleus (N,Z).

For the case of proton rich nucleus (N,Z) the density
again is composed of two parts: the core and the tail, each
part having the correct asymptotic behavior. As a con-
sequence the proton tail part will have slightly different
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power dependence because of its different asymptotic be-
havior due to the Coulomb interaction (dependence of α
on Q). It is taken as

ρtail = N0

(
r2

(r2 +R2)2+(Q/h̄)(m/(2εt))1/2

)
e−r/at . (26)

Here at is given by the same expression (eq. (25)) as before
except that εt (and so also in eq. (23)) now corresponds to
the proton separation energy of the loosely bound nucleus
(N,Z). All the rest of the above description for the case
of neutron-halo also holds here with neutron replaced by
proton and vice versa.

In this picture, we therefore regard, for example, 8Li
(8B), and 9Li to be composed of 7Li (7Be) core and 1n
(1p) and 2n neutron tail, respectively, while 11Li has 9Li
core followed by 2n halo. Explicitly

8Li ⇐⇒ 7Li + 1n,
8B ⇐⇒ 7Be + 1p,
9Li ⇐⇒ 7Li + 2n,

and

11Li ⇐⇒ 9Li + 2n.

2.3 Reaction studies with radioactive ion beams

The fragmentation studies in high-energy heavy-ion exper-
iments permit to separate and then accelerate the beam of
highly neutron (proton) rich unstable or halo nuclei. This
secondary beam can then be used as a projectile incident
on a variety of targets. These reaction studies help to ex-
tract the nuclear structure information of these unstable
(very short lived) nuclei which otherwise would not have
been possible. Using the measured cross-sections it is pos-
sible to extract the nuclear mass root mean square (rms)
radii within the Glauber model. Infact, even the so-called
experimental nuclear densities are extracted for these nu-
clei using the corresponding observed cross-sections, mo-
mentum distributions of the fragments and other related
experimental information. A brief sketch of the Glauber
model now is in order.

2.3.1 Glauber model

In the Glauber model the reaction cross-section σR is given
by

σR = 2π
∫
[1− T (b)]b db , (27)

where T (b) is the transparency function at impact pa-
rameter b. Assuming the optical limit approximation and
replacing the nucleon profile function by the average NN
cross-section σ̄, the transparency function T (b) under the
zero range limit, reduces to

T (b) = exp
[
− σ̄

∫
ds ρ̄t(s)ρ̄p(b − s)

]
. (28)

Here the suffix t(p) refers to target (projectile) and ρ̄i(s)
is a z-direction integrated nucleon (sum of proton and
neutron) density ρ distribution expressed as:

ρ̄i(s) =
∫

dz ρ
((

s2 + z2
)1/2

)
, (29)

with s2 = (x2 + y2). Thus the calculation of the reaction
cross-section in the Glauber model requires the average
NN cross-section and the density distributions of both the
target and the projectile.

3 Calculations-results and discussion

We, now, present, discuss and analyse some of our re-
sults of numerical calculations using the proposed densi-
ties. The required input namely the neutron and proton
separation energies εn and εp (MeV) are taken from the
experiment ([20]) while the experimental charge radii (Rc)
are taken from [21] (where available). Otherwise these are
taken from the earlier work and in the absence of it their
values are based on some physical information/arguments.
These together with the calculated values of the half den-
sity radius parameter R, the point proton radius (Rp) are
listed in table 1 for the isotopes of He, Li, Be and B con-
sidered in the present work. Similar results for the target
nuclei (9Be, 12C and 27Al) are also included in the same
table.

3.1 Root mean square radii

The calculated values (calc) of the point neutron radius
(Rn) and the rms radius (Rrms) along with the correspond-
ing values of Tanihata and others, are listed under column
labelled as Tan in table 1. It should be pointed out that
the only input in our densities are the experimental nu-
cleon separation energies (εn and εp) and the charge radii
(Rc). In several cases the experimental nucleon separation
energies and charge radii (Rc) are not available and there-
fore these are to be taken from the earlier work or other
sources. As a consequence some though small uncertain-
ties may creep in, in the calculated results.

The inspection of the table 1 reveals that the calcu-
lated radii in general, are in good agreement with the fit-
ted, the so-called experimental values. It is observed that
the rms radii (Rrms) for He isotopes are very close to those
obtained in the earlier studies [2,22,23]. However, there
are some differences for example the calculated neutron
skin for 6He (6He) is 
 0.3(0.4) fm while it is reported
to be 
 0.9(0.9) fm by Tanihata et al. [22] in their studies
with harmonic oscillator densities. The calculated radii for
Li and Be isotopes are consistent with the earlier inves-
tigations [2]. The calculated value 2.97 fm of rms radius
for 14Be also compares well with 3.10 ± 0.15 fm obtained
in the recent investigations by Suzuki et al. [24]. The nu-
cleus 8B, anticipated a proton halo case, has also been
studied recently by Fukuda et al. [9]. Describing 8B as a
Gaussian core plus a proton Yukawa tail and determining
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Table 1. The neutron and proton separation energies (εn and εp) (MeV), the charge radii (Rc), the calculated half density radii
(R), point root mean square proton (Rp) and neutron (Rn) radii, and the mass root mean square radii (Rrms) in fermis. The
corresponding values of Rn and Rrms taken from [2] are also listed under Tan.

εp εn Rc R Rp Rn Rrms

calc. Tan calc. Tan
4He 19.81 20.58 1.67c 0.90 1.48 1.47 1.57 1.48 1.57
6He 28.19 1.86 2.46a 2.45 2.34 2.61 2.61 2.52 2.48
8He 28.19 2.58 2.33a 2.25 2.20 2.59 2.64 2.50 2.52
6Li 4.59 5.66 2.57c 1.11 2.45 2.42 2.32 2.43 2.32
7Li 9.97 7.25 2.41c 1.63 2.28 2.55 2.27 2.44 2.33
8Li 12.45 2.03 2.41a 1.83 2.28 2.86 2.44 2.66 2.37
9Li 13.93 4.06 2.30a 1.74 2.17 2.72 2.39 2.55 2.32
11Li 14.66 0.73 2.30a 1.77 2.17 3.67 3.21 3.32 3.12
7Be 5.61 10.68 2.52a 1.31 2.40 2.09 2.25 2.27 2.31
8Be 17.25 18.90 2.50d 2.24 2.38 2.36 – 2.37 –
9Be 16.89 1.67 2.50c 2.22 2.38 2.93 2.40 2.70 2.38
10Be 19.64 6.81 2.34a 2.07 2.21 2.53 2.34 2.40 2.30
11Be 20.56 0.50 2.37d 2.15 2.24 3.12 2.78 2.83 2.73
12Be 23.00 3.17 2.40d 2.26 2.27 2.73 2.65 2.58 2.59
14Be 23.00 3.35 2.43d 2.30 2.30 2.95 3.22 2.70 3.16
8B 0.14 13.02 2.58b 1.20 2.24 2.09 2.27 2.18 2.38
10B 6.59 8.44 2.45c 1.41 2.32 2.31 – 2.32 –
11B 11.23 11.45 2.42c 1.73 2.24 2.30 – 2.27 –
12B 14.09 3.37 2.48b 2.08 2.36 2.56 2.42 2.42 2.39
13B 15.80 4.87 2.54b 2.26 2.42 2.56 2.50 2.45 2.46
14B 18.78 0.97 2.51b 2.32 2.39 3.03 2.48 2.77 2.44
15B 18.20 2.77 2.50b 2.29 2.38 2.86 2.49 2.66 2.45
12C 15.96 18.72 2.47c 2.17 2.35 2.32 2.35 2.33 2.35
27Al 8.27 13.06 3.05c 2.75 2.95 2.87 – 2.91 –

(a) Ref. [1], (b) ref. [2], (c) ref. [16], (d) see text.

the parameters of their model through the least-square fit
to the observed reaction cross-sections at lower projectile
(8B) energies (32–60 AMeV) on Be, C and Al targets,
obtained the value 2.53 ± 0.03 (2.31 ± 0.05) fm for point
proton (neutron) radius and 2.45 ± 0.10 fm for the rms
radius. They found appreciable variations in these values
when compared with the earlier experimental and theo-
retical investigations. The present calculated values are in
fair agreement with their values and also with those re-
ported in [2]. It is fair to say that our calculated values,
overall, are in good agreement with the corresponding fit-
ted ones, the so-called experimental, values.

The calculated rms (Rrms) radii for 6,8He, 8,10Li, 9,11Be
and 8,14B nuclei are arranged in table 2. The correspond-
ing values of the core and the tail (halo) parts are also
given in the same table together with their respective fit-
ted ones, the so-called experimental values (expt) where
available. The results indeed are similar to the earlier
work [3] though the calculated values of Rrms for 6He,
8,11Li, 9,11Be and 14B are relatively larger. We notice
that the experimental (fitted) Rrms of the core (9Li) in
11Li is significantly larger (2.61± 0.10) as compared with
(2.32 ± 0.02) of the 9Li nucleus while in our case there is
hardly any difference between the two.

3.2 Density distributions

We now present and analyze the density distributions of
8B, 10B, 11Li and 11Be. The reason for selecting these
nuclei is that for them some experimental density distri-
butions are available. The density distribution of 8B nu-
cleus has been deduced recently by Obuti et al. [25] and
by Fukuda et al. [9]. Obuti et al. described 8B as a 7Be
core plus a single proton. The core (7Be) density distri-
bution, assumed to be of the Woods-Saxon shape with
diffuseness parameter to be 0.65 fm, was determined so as
to fit the experimental 7Be + C cross-section. The single-
proton (tail) wave function and hence the density were
obtained by solving the Schroedinger equation with the
Woods-Saxon and Coulomb potential so as to have the
correct proton separation energies corresponding to 1p,
2s and 1d orbitals. The core and the tail parts were added
to get the total density distribution. Similar analyses were
carried out for 8Li assuming it to be composed of 7Li core
and a single neutron. Both the core (7Li and 7Be) dis-
tributions were found to be almost identical. The density
distributions of both 8B and 8Li are very similar but the
tail of 8B extends to a much larger distance due to its
small (0.137MeV) proton separation energy (εp), the cor-
responding (neutron separation energy) value for 8Li be-
ing 2.0MeV. Our results shown in figs. 1 and 2 agree with
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Table 2. The calculated root mean square radii Rrms (in fm) of loosely bound nuclei along with the Rrms values of the respective
core and tail parts. The corresponding values taken from the earlier work are also listed under expt.

Nucleus calc. expt. Nucleus calc. expt.
6He core 1.48 1.57±0.04 8He core 1.48 1.57±0.04

halo 3.39 – halo 3.00 –
total 2.52 2.48±0.03 total 2.50 2.52±0.03

8Li core 2.44 2.33±0.02 11Li core 2.55 2.61±0.10∗
halo 3.85 – core 2.55 2.50±0.10#

total 2.66 2.37±0.02 halo 5.61 4.80±0.8∗
halo 5.61 4.80±0.8#

total 3.32 3.12±0.30∗
total 3.32 3.05±0.30#

9Be core 2.37 – 11Be core 2.40 2.30±0.02
halo 3.39 – halo 6.61 –
total 2.52 2.38±0.01 total 2.83 2.73±0.05

8B core 2.27 2.31±0.02 14B core 2.45 2.46±0.12
halo 2.59 – halo 5.48 –
total 2.25 2.38±0.04 total 2.77 2.44±0.06

(∗) Ref. [3] (1p halo neutron orbitals).
(#) Ref. [3] (2s halo neutron orbitals).

Fig. 1. The calculated density distribution for 8B. The core
(7Be) and the halo (single proton) parts are also shown seper-
ately. The experimental density distribution taken from [9] is
also shown.

these observations. Fukuda et al. [9] considered 8B as a
Gaussian core plus a proton Yukawa tail and determining
the parameters of their model through the least squares
fit to the observed reaction cross-sections at lower projec-
tile (8B) energies (32–60 AMeV) on Be, C and Al targets,
obtained its density distribution. This is shown in fig. 1
along with the present calculated density distribution for
8B. Clearly the distributions closely resemble each other.

The density distribution of 10B was investigated by Ci-
chocki et al. [26] in their study of electron scattering from
10B. In particular they measured in the (e, e′) reaction on
10B the pure isovector M3 form factor of 1.74MeV excita-

Fig. 2. The calculated density distribution for 8Li. The core
(7Li) and the halo (single neutron) parts are also shown seper-
ately.

tion, the Fourier transform of which yields the 1p3/2 single
nucleon (proton) wave function. The 1p3/2 density (nor-
malized to shell occupancy of three protons) obtained from
the Fourier-Bessel analysis of this M3 form factor is shown
in fig. 3 (shaded band labelled as 1p3/2). The curves A, B
and C are obtained by using a different parameterization
of the contribution for C2 multipoles (quadrupole) of the
elastic and 6.025MeV inelastic form factors. The curve A
is obtained by using the observed value of 8.472 fm2 in the
simple 1p-shell model expression of the C2 form factor. In
a way the curves A and C which use different parameter-
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Fig. 3. The calculated point proton density distribution for
10B marked ‘Present’. For explanation of the labels A, B, C see
text. The experimental density distribution taken from [26] is
also shown.

izations correspond to lower and upper bounds on the C2
component. Our calculated model proton density is also
shown which fits the curves reasonably well. The tail part
essentially lies within the shaded area.

The calculated density distribution for 11Li is shown in
fig. 4. The core (9Li) and the two neutron-halo parts are
also shown. The intuitive neutron-halo structure of 11Li
is amply clear from the figure. The so-called experimen-
tal density of 11Li obtained by Tanihata [3] is also shown.
Tanihata et al. [3] regarded 11Li to be composed of 9Li
core plus two halo neutrons. The core was assumed to
have harmonic oscillator density with four nucleons in the
1s orbital and the remaining one proton and four neutrons
occupying 1p orbital. The halo neutrons were assumed to
move independently in the potential provided by this core
having the shape (harmonic oscillator) of the core density.
The two neutron density (halo part) was added to the core
part to get the total density for 11Li. The depth (width
of the oscillator potential) and the binding energy (neu-
tron separation energy) were treated as parameters for the
calculation of the halo part and were fixed by fitting the
observed cross-sections. Two orbitals 2s and 1p were con-
sidered for the halo neutrons. The fitted width parameter
gave larger size (Rrms) viz. 2.50±0.10(2.61±0.10) for the
1p (2s) orbitals, for the core (9Li). As mentioned before
the corresponding present calculated value is 2.55 fm. The
density distributions for 11Li by Tanihata et al. [3] for
both 2s and 1p orbitals were almost identical. This is not
difficult to understand as the leading part of the asymp-
totic behavior of the tail part is independent of the orbital
angular momentum and it appears only in the next order
(see eqs. (12), (13)). Clearly, the calculated density of 11Li
shown in fig. 4, agrees well with the experiment (deduced
by Tanihata et al. [3]) and lies within the experimental

Fig. 4. The calculated density distribution for 11Li. The core
(9Li) and the halo (two neutrons) are also shown seperately.
The experimental density distribution taken from [3] is also
shown.

uncertainties. This indeed is gratifying in view of the very
simple analytic form of the proposed density. It indicates
the accuracy of the proposed form of density.

Fig. 5. The calculated density distribution for 11Be. The core
(10Be) and the halo (single neutron) are also shown seperately.
The experimental density distribution taken from [3] is also
shown.

The density distribution of 11Be was obtained by
Fukuda et al. [27], assuming it to be composed of a core
density of Gaussian shape and a single neutron Yukawa
tail. The parameters were obtained through the best fit to
the observed reaction cross-sections for 790 AMeV 11Be
incident on 12C and 27Al targets, in the Glauber model.
This density shown in fig. 5 by shaded part compares well
with the present calculated model density for 11Be.



A. Bhagwat et al.: Nuclear densities in the neutron-halo region 519

Table 3. The calculated reaction cross-sections (σcalc (mb)) in the Glauber model using the present densities at 790/800 AMeV
incident energy on 9Be, 12C and 27Al targets, along with the corresponding experimental values.

Target 9Be 12C 27Al
σcalc σexpt σcalc σexpt σcalc σexpt

Projectile
4He 461 485± 4 462 503±5 745 780±13
6He =⇒ 4He+2n 678 672±7 703 722±6 1084 1063±8
8He =⇒4He+4n 767 757±4 780 817±6 1184 1197±9
6Li 672 651±6 695 688±10 1060 1010±11
7Li 720 686±4 734 736±6 1103 1071±7
8Li =⇒7Li+1n 795 727±6 814 768±9 1217 1147±14
9Li =⇒7Li+2n 815 739±5 823 796±6 1222 1135±7
11Li =⇒ 9Li+2n 1025 981±20 1068 1047±40 1605 –
7Be 688 682±7 699 738±9 1059 1050±17
8Be 743 – 744 – 1107 –
9Be =⇒ 8Be+1n 834 755±6 848 806±9 1263 1174±11
10Be =⇒ 8Be+2n 814 755±7 806 813±10 1191 1153±16
11Be =⇒ 10Be+1n 947 878±10 969 942±8 1463 1382±25
12Be =⇒ 10Be+2n 925 873±22 922 927±18 1349 1305±31
14Be =⇒ 12Be+2n 1021 – 1021 1139±90 1479 –
8B =⇒7Be+1p 710 731±15 712 784±14 1077 1106±32
10B 799 – 794 – 1179 –
11B 815 – 799 – 1182 –
12B =⇒ 11B+1n 873 814±9 859 866±7 1262 1250±15
13B =⇒11B+2n 904 890±17 885 883±14 1293 1233±28
14B =⇒13B+1n 998 860±31 997 929±26 1470 1264±43
15B =⇒ 13B+2n 1007 925±120 996 962±160 1448 1175±180

Table 4. The calculated reaction cross-sections (σcalc (mb)) in the Glauber model using the present densities at various incident
projectile energies (MeV) on 9Be and 12C targets, along with the corresponding experimental values.

Projectile
11Li 14Be

Energy σcalc σexpt Energy σcalc σexpt

Target
400 A 922 989±21

12C 790A 1068 1047±14 790 A 1066 1139±90
800A 1070 1056±14

850 A 1068 1082±34
9Be 400A 861 911±20

800A 1026 981±20

3.3 Reaction cross-sections

The reaction cross-sections are calculated in the Glauber
model for 790 A (MeV) He-, Li-, Be-, and B-isotopes as
projectiles incident on 9Be, 12C and 27Al targets using
these densities. These are listed in table 3 along with the
corresponding experimental values taken from [1,2]. The
calculations agree well with the corresponding experimen-
tal values. However, small (≤ 7%) differences do appear
at some places. Next we analyze the energy dependence
of the reaction cross-sections in the Glauber model. The
calculated cross-sections using the present densities at dif-
ferent energies for projectiles (11Li,14Be) incident on 9Be
and 12C targets are arranged in table 4 together with the
corresponding experimental values [3]. Here also the cal-

culated results are in good agreement with the experi-
mental values. We may conclude that the present calcu-
lated results are indeed satisfactory. This is important as
it demonstrates the reliability of the proposed densities.

In summary, we reiterate that overall, our simple an-
alytic expressions for nuclear densities with the correct
asymptotic behavior provide a useful and accurate (rea-
sonable) description of the nuclear densities.
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